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We developed a high-content reporter system that allows

quantitative assessment of activities of multiple transcription

factors (TFs) in a eukaryotic cell. The system comprises a library

of reporter constructs that are evaluated according to their

transcription rates. All reporters produce essentially identical

messages that are subjected to ‘processing’, which generates

a spectrum of distinguishable fragments that are analyzed

quantitatively. The homogeneity of the reporter library afforded

inherently uniform detection conditions for all reporters and

provided repeatability, accuracy and robustness of assessment.

We showed that this technology can be used to identify

pathways transmitting cell responses to inducers, and that the

profile of TF activities generated using this system represents

a stable and sustained cell signature that clearly distinguishes

different cell types and pathological conditions. This technology

provides a framework for functional characterization of signal

transduction networks through profiling activities of

multiple TFs.

The cellular gene regulatory network comprises many interacting
signal transduction pathways. At the apexes of many pathways are
TFs, which are DNA-binding proteins that recognize specific
sequences within regulatory regions of target genes and thereby
modulate their transcription. It has been estimated that mamma-
lian genomes encode about 2,000 of TFs that may be divided into
150–400 of families according to similarities of their DNA-binding
motifs1–3. By surveying activities of the multiple TFs one should be
able to obtain a snapshot that comprehensively characterizes
functional state of a gene regulatory network. However, this
approach requires adequate tools for high-content TF analysis.

Transcriptional activity of a TF is defined by its ability to activate
or suppress transcription. TF activity is regulated by various
post-translational modifications of pre-existing TFs, and thus
the protein content does not reflect the TF’s functional status.
Many TFs are regulated thru modulation of their DNA-binding
properties, and thus DNA-binding assays are frequently used to

measure TF activation, including multiplexing assays that can
evaluate several TFs at a time4,5. But although DNA binding is a
prerequisite for transcription, a TF’s activity can be modulated
independently from DNA binding, for example, through many TF
modifications that alter TF interactions with corepressors and
coactivators. For example, many nuclear receptors are constitu-
tively bound to their cognate DNA sequences, but their transcrip-
tional activities are specifically regulated by ligands6. Therefore,
DNA binding is only a surrogate indicator of TF activity.

A gold standard for functional TF assessment has been a reporter
gene assay that makes use of a reporter gene construct wherein a
TF-responsive promoter controls expression of a gene encoding an
easily assayable reporter protein7. However, owing to a limited
repertoire of reporter proteins, these assays are useful for assess-
ments of very few TFs at a time. Another problem is that reporter
proteins may be unpredictably affected by irrelevant post-
transcriptional mechanisms8.

These limitations can be obviated by using multiple reporter
constructs with different reporter sequences that are evaluated
according to their transcription rates, for example, by hybridizing
the reporter transcripts to a detection array9. However, the innate
heterogeneity of reporter sequences is a major problem because
distinct reporter sequences are transcribed with different efficacies,
their transcripts have different secondary structures and stabili-
ties10, and their half-lives may be differentially affected by various
extracellular stimuli11. These problems may have detrimental
effects on the linearity, accuracy and reproducibility of assay.

Here we describe a high-capacity reporter system that makes use
of highly similar reporter constructs that generate nearly identical
reporter transcripts. To distinguish these transcripts, we used a
procedure referred to as ‘processing’, which produces distinct DNA
fragments that are quantitatively evaluated by capillary electro-
phoresis. This detection approach virtually eliminated nonspecific
detection background, and the similarity of the reporter constructs
brought about an inherent uniformity of individual assessments,
thus affording repeatability, accuracy and robustness of the
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multiplexing detection. Furthermore, the TF activity profiles
obtained with our technology represented robust and sustained
cell signatures, and provided invaluable information about the state
of a gene regulatory network.

RESULTS
Library of homogenous reporter transcription units
A core component of our system is a library of reporter constructs
that we termed ‘reporter transcription units’ (RTUs). An RTU
resembles a conventional reporter gene construct in that it has

a TF-responsive promoter linked to a downstream reporter
sequence. RTU transcripts are not translated into proteins;
instead, we evaluated RTU activities by directly assessing reporter-
transcript abundance.

A principal and distinct feature of our approach is that all RTUs
have essentially identical reporter sequences (Fig. 1a and Supple-
mentary Fig. 1 online). To distinguish individual reporter tran-
scripts, reporter sequences are tagged with ‘processing tags’ that
represent an endonuclease recognition site (for example, HpaI) that
defines a unique cleavage position for each reporter cDNA (Fig. 1a
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Figure 1 | Reporter system for functional assessment of multiple TFs. (a) Outline of the method. The two shown RTUs respond to TFs A and B. After transfection

of RTUs into cells of interest, total RNA is isolated, reverse-transcribed, amplified, fluorescently labeled, processed, and the resulting fragments are quantified by

capillary electrophoresis. (b) The auxiliary reporter library is a mix of 77 individual SV40 RTU plasmids at approximately equimolar ratio. (c,d) Electrophoregrams

representing profiles of relative DNA concentrations of RTUs in the library (c) and in DNA isolated from transfected HepG2 cells (d) obtained using the modified

MRTU detection protocol, that is, omitting the reverse transcription and DNAse treatment. (e) Electrophoregram representing profile of relative concentrations of

RTU transcripts obtained by analyzing total RNA from transfected cells according to the original MRTU detection protocol. Insets illustrate that fluorescence

intensities of the peaks reversely correlate with their sizes. To account for this artifact, peak intensities were corrected by using the approximating trend line.

(f,g) Relative transfection (f) and transcription (g) efficacies of the individual SV40 RTUs calculated from the primary electrophoregrams (c–e). Shown are mean

values of three independent experiments performed in parallel; error bars, s.d.
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and Supplementary Fig. 1). For multiplexing, a library of multiple
RTUs (MRTU library) is introduced into cells of interest; subse-
quently total RNA is isolated and reverse transcribed into cDNA.
The reporter cDNAs are amplified using a pair of primers that is
common for all RTUs, labeled with a fluorescent label,
and processed by the HpaI digest. The digest produces a spectrum
of DNA fragments of different lengths that are resolved by
capillary electrophoresis and detected as separate fluorescent
peaks (Fig. 1a).

We expected the reporter transcripts to have equal transcription
efficacies resulting in highly uniform detection conditions for all
the RTUs. To test this assumption, we constructed an auxiliary
SV40-MRTU library wherein all RTUs had an identical SV40
promoter and reporter sequences that differed only by the HpaI
tag position (Fig. 1b). We introduced this auxiliary library into
HepG2 cells and determined the relative concentrations of indivi-
dual reporter transcripts using the MRTU detection protocol. We
normalized these data to the profile of relative DNA concentrations
of the individual RTU plasmids taken up by the cells (Fig. 1c–e).
The profile of relative concentrations of individual SV40 RTU
plasmids in cells (Fig. 1d) was identical to that in the transfected
plasmid library (Fig. 1c), indicating that representation of the
individual RTUs was not altered after transfection (Fig. 1f). The
vast majority of the Hpa1-tagged SV40 RTUs had very similar
transcription efficiencies (Fig. 1g). Notably, we observed this
uniformity of detection of the individual RTUs in a diverse set of
human and mouse cell types, and it was not affected by various
extracellular stimuli (Supplementary Fig. 2 online). Thus, in most
cases, introduction of the HpaI processing tag did not substantially
affect properties of reporter sequences and their transcripts.

We then used the HpaI-tagged reporter sequences from the SV40
RTUs to construct TF-inducible RTUs whose promoters were
typically made of single or multiple copies of TF DNA-binding
sequences (for example, NF-kB, AP-1, c-Myc, HIF-1a and others;
see Supplementary Tables 1 and 2 online for a complete list

of TF-inducible promoters and their binding sequences). We also
used several stimulus-specific promoters to construct RTUs that
were rendered specifically responsive to particular extracellular
stimuli (for example, to: bone morphogenic proteins, BRE
RTU; transforming growth factor beta, TGFb RTU; and xenobio-
tics, PXRE RTU) rather than to a particular TF. Along with the
inducible elements, each RTU promoter had a common,
minimal, TATA-like sequence to facilitate recruitment of basal
transcriptional machinery (Supplementary Fig. 1). In the vast
majority of experiments, we introduced RTUs into cells as circular
rather than linearized plasmids because the former one afforded
substantially better efficacy of transfection. To minimize contribu-
tion of transcriptional readthrough from the vector backbone, all
RTUs contained transcription termination signal (comprising
synthetic polyadenylation site12 and transcription pause site
from human a2 globin gene13) that were positioned upstream of
the TF-inducible promoters (Supplementary Fig. 1). Having
validated the inducibility of individual RTUs’ promoters in
separate experiments (Supplementary Fig. 3 and Supplementary
Table 3 online), we assembled the RTUs into a prototypical
MRTU library comprising 43 TF- or stimulus-inducible
RTUs, the TATA RTU (which had the common minimal TATA
promoter), and several auxiliary SV40 RTUs that we included for
calibration purposes.

Analyzing basal TF activity profile of cell
To obtain the basal TF activity profile of a cell, we transfected the
MRTU library into cells of interest (in the example shown in Fig. 2,
HepG2 cell line), and processed total cellular RNA according to the
MRTU detection protocol. The primary readout of the assay is the
electrophoregram (Fig. 2a) wherein the individual peaks reflect
activities of corresponding RTUs. The standardized capillary elec-
trophoresis peak’s values (in percent of the sum of all peaks)
represent the relative concentrations of the individual RTU tran-
scripts (Fig. 2b). To account for variations in RTU plasmid
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Figure 2 | TF activity profile in HepG2 cells transiently transfected with the RTU library. (a) Representative primary readout capillary electrophoregram for

individual RTUs. (b) Standardized MRTU assay readout obtained by normalizing the signals of individual peaks to the sum of signals of all peaks. Means of data

(± s.d.) obtained in 6 parallel experiments. Inset illustrates linearity (R2 ¼ 0.9992) of signals generated by five calibrating SV40 RTUs (black bars) that were
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not shown. Each point represents a mean of six independent experiments performed in parallel. Note that radial graph has logarithmically scaled axes.
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concentrations, we normalized the standardized capillary electro-
phoresis peak values based on the corresponding DNA concentra-
tions, thus generating the profile of specific RTU activities that we
consider as bona fide TF activity profile. We presented the specific
RTU activities as fold-induction values of the individual RTUs
versus the TATA RTU, which contains only the TATA-like sequence
that is common to all RTUs in the library and thus accounts for the
nonspecific basal transcription (Fig. 2c). In example shown in
Figure 2c, the fold induction values of PAX, MRE and EGR RTUs
were close to 1.0, indicating that the cis elements of these promoters
did not enhance the basal transcription and thus suggesting

minimal activation of the corresponding TFs. In contrast, specific
activities of AP-1, Tcf/b-cat, p53 and NF-kB RTUs exceeded that of
the TATA RTU by 100–1,000 fold, indicating strong constitutive
activation of these TFs.

MRTU assay validation
We evaluated repeatability, linearity and robustness of the MRTU
assay. Having compared TF activity profiles for multiple replicates,
we found that the standard deviation values of individual RTU
activities were in the range of 1–14% of their mean values (Fig. 2b),
with a median of 5%, which is comparable with the repeatability of
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Figure 3 | Robustness of the MRTU assay. (a) MRTU assay in HepG2 cells transfected with 20 ng or with 500 ng of the MRTU library. The total amount of DNA in
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high-quality multiplexing gene expression platforms14. We assessed
linearity of the assay by comparing the signals produced by titrated
calibrating SV40 RTUs. Linearity was nearly perfect (R2 ¼ 0.9992),
indicating that the RTU activity profiles were not distorted despite
the exponential nature of PCR amplification (Fig. 2b).

Because transfection efficiency can vary broadly between
experiments and among different cell types, we assessed consistency
of the results obtained in experiments when different amounts

of the MRTU library were used. We found
that titration of the reporter DNA library
from 500 ng to 20 ng per transfection
caused no apparent effects on the TF
activity profile (Fig. 3a).

We also evaluated the sensitivity
of the assay to variations in integrity
of the isolated RNA. We assayed RNA
samples with substantially different
amounts of RNA degradation and found
no differences between the assay read-
outs (Fig. 3b).

Finally, to evaluate the potential variability resulting from
differences in PCR amplification, we assessed the TF activity
profiles after altering the number of PCR amplification cycles.
We found that MRTU assay results were identical when we used
PCR products collected during either exponential or saturation
phases of the reaction (Fig. 3c).

We believe that the robustness of the MRTU assay stems
from the similarity of the individual reporter transcripts,
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which are equally affected by the variations in test conditions,
and thus their relative concentrations remain unchanged.

TF signatures of biologically active molecules
We next accessed the feasibility of using our MRTU assay to
characterize biological properties of various stimuli and compounds
by exposing cells to these agents and analyzing the induced altera-
tions in the TF activity profile. We transiently introduced the MRTU
library into HepG2 cells and assessed TF activity profiles before and
after stimulation with various prototypical inducers, including
6-formylindolo carbazole (FICZ), a high affinity agonist of the
aryl hydrocarbon receptor (AhR) pathway15; forskolin, an activator
of adenylate cyclase and prototypical inducer of cAMP-dependent
pathway16; and TGFb, a prototypical inducer of TGFb pathway17.
The major changes elicited in the TF activity profile were consistent
with the known specific properties of the stimuli. That is,
FICZ, forskolin and TGFb potently activated AhrE RTU (139-fold

induction, P ¼ 0.00014), CRE RTU (a 16-fold induction, P ¼
0.00007) and TGFb RTU (78-fold induction, P ¼ 0.0005), respec-
tively (Fig. 4). There were also other, subtler, yet statistically signi-
ficant, responses. For example, forskolin activated the C/EBP RTU
(1.75-fold induction, P ¼ 0.002); TGFb activated the PPRE RTU
(3.6-fold induction, P ¼ 0.0023) but inhibited c-Myc RTU (0.54-
fold induction, P ¼ 0.0009), p53 RTU (0.44-fold induction, P ¼
0.0013), HIF1aRTU (0.34-fold induction, P¼ 0.01) and Xbp1 RTU
(0.46-fold induction, P ¼ 0.01), whereas FICZ activated the PPRE
RTU (a 2.8-fold induction, P¼ 0.0005) (Fig. 4 and Supplementary
Table 4 online). Notably, we reproduced these responses in inde-
pendent experiments performed at different times and in different
batches of HepG2 cells (Supplementary Fig. 4 online).

TF activity profile represents distinct cellular signatures
To use TF activity profile as potential cell signature, we determined
how different distinct TF activity profiles were in different cell types

as compared to temporal fluctuations of
these profiles. To quantitatively compare
TF activity profiles, we used an approach
similar to that used for comparing gene
expression profiles in transcriptomics18.
Accordingly, we considered a TF activity
profile as an N-dimensional vector whose
coordinates are determined by the specific
activity values of the N RTUs. In this
approach, the similarity of any two TF
activity profiles is a function of distance
between these vectors, which can be evalu-
ated by different means, for example, as the
Pearson’s correlation18. Using this metric,
we quantitatively compared the temporal
and cell type–specific differences of TF activ-
ity profiles in several established human and
rat cell lines. We found that for each parti-
cular cell type we tested, the TF activity
profile was a remarkably reproducible char-
acteristic that did not change over many
cell generations (Fig. 5). The dissimi-
larities between TF activity profiles obtained
from different passages of each cell type
were negligibly small as compared to the
differences of TF profiles of distinct cell
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Figure 6 | Anatomically related cancer cells have

distinct TF activity profiles. (a,b) Human colorectal

cancer cell lines SW480 and HCT116 (a), and

human breast cancer cell lines ZR-75-1, MCF-7,

MDA-MB-231 and SK-BR-3 (b) were maintained

under identical growth conditions. The basal TF

activity profiles were obtained by transiently

transfecting the cells with prototypical MRTU

library and by following the MRTU detection

protocol. Data were calculated as described in

Figure 2. Each graph represents profile of mean

values of specific RTU activities obtained in three
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types. In fact, TF activity profiles at passages N and N + 20 were so
similar that the corresponding graphs almost completely overlapped
(Fig. 5). Thus, we concluded that TF activity profile represents a
robust signature of cell.

Analyzing cancer-related alterations of TF activity profiles
We compared TF activity profiles in several cancer cell lines of
closely related anatomic origins: two human colorectal carcinomas
and four human breast carcinomas. It is well established that the
pattern of gene expression for different cancer cell lines of the
related histological origins largely overlap19–22. In contrast, TF
activity profiles were clearly distinct even in closely related cancer
cell types (Fig. 6 and Supplementary Table 5 online). For example,
we found a low similarity between TF activity profiles of two
luminal breast carcinomas ZR-75-1 and MCF-7 (r ¼ 0.525) and of
two colorectal carcinomas SW480 and HCT116 (r ¼ 0.191),
whereas cells of different origins (breast carcinoma ZR-75-1 and
colorectal carcinoma HCT116) showed a much higher similarity
(r ¼ 0.833), suggesting that TF activity profiles could relate cancer
cells not according to their tissue origin, but rather by commonality
of underlying mechanisms of their transformation.

We found many features of the TF activity profiles that were in
agreement with previously published data. For example, a high
activity of TCF/b-catenin RTU in SW480 colorectal carcinoma cells
was consistent with published data23,24; a high NF-kB RTU activity
in MDA-MB-231 breast carcinoma cells is consistent with reported
constitutively active NF-kB in these cells25. Furthermore, the
activity of p53 RTU correlated with the functional status of
tumor-suppressor p53 protein, that is, cells with wild-type p53
(ZR-75-1, MCF-7 and HCT11626,27) showed a high p53 RTU
activity, in contrast to cells that had mutant p53 (SW480, MDA-
MB-231 and SK-BR-3 cells28–30). Akin to that, estrogen receptor–
positive ZR-75-1 and MCF-7 cells31 showed a high ERE RTU
activity as compared to estrogen receptor–negative (MDA-MB-
231 and SK-BR-3 cells31) (Fig. 6). These data demonstrate that TF
profiling technology can be used to reveal disease-related altera-
tions occurring in signal transduction networks in cancer cells.

DISCUSSION
The prototypical MRTU library described here afforded evaluation
of 43 distinct cis-regulatory RTUs. The assessment content can be
readily scaled up by including additional RTU plasmids in the
library. Hundreds of HpaI-tagged reporter sequences are available
for this purpose, and the single-base resolution of capillary electro-
phoresis instruments is sufficient to analyze hundreds of additional
RTU peaks. Thus, we believe that we could gradually develop an
MRTU platform to analyze activities of several hundred of already
annotated mammalian TFs3 and, ultimately, the entire complement
of mammalian TFs.

In its current form, our prototypical MRTU assay has certain
technical limitations. First, the assay depends on efficient transfec-
tion. We successfully used the plasmid-based MRTU library to
analyze dozens of various cell types, including established human
and mouse cell lines and primary cell cultures, such as mouse and
rat hepatocytes, embryo fibroblasts and human skin fibroblasts
(data not shown). However, some cell types are refractory to
transfection. To obviate this limitation, RTUs may be cloned into
the backbone of appropriate delivery vehicle, for example, a
recombinant viral vector. Another limitation is that the standard

capillary electrophoresis fluorescence detectors that are used in
DNA sequencers have a rather narrow (about 100-fold) linear
detection range. This limits the accuracy of detection for very
strong and very weak signals. This limitation can be obviated either
by using fluorescent detectors with a larger dynamic range, or by
analyzing several dilutions of the sample.

Despite the limitations, the remarkable robustness and accuracy
exhibited by our technology allowed us for the first time to perform
truly quantitative assessments of TF activity profiles in different cell
types and under different conditions. We established that TF
activity profiles represent robust and sustained signatures that do
not change over many cell generations and that are quite distinct for
different cell types. These data justified the use of TF activity
profiling for high-content analyses of cellular regulation.

The TF-profiling technology that we developed should find many
biomedical applications. Here we demonstrated a few of them, By
introducing the MRTU library into cells we produced a new type of
cell-based biosensors that characterize evaluated stimuli according
to the elicited alterations in TF activity profiles. This approach is not
dissimilar from other toxicogenomic approaches, when compounds
are characterized by elicited changes in gene expression profiles32.
However, the TF-profiling technology has a distinct advantage in
that it affords direct identification of the involved pathways and thus
allows clear-cut interpretation.

Another potential application of the TF profiling technology that
we described here deals with analyzing mechanisms underlying
cancer cell pathology. We showed that cancer cell lines, even those
derived from anatomically related cancer lesions, can be distin-
guished according to their TF activity profiles. This observa-
tion suggests a new approach to identification of cancer-related
abnormalities of signal transduction pathways, and to development
of personalized approaches to cancer treatment.

There are many other potential applications, including gene-
function annotation in the context of signal transduction, evaluation
of drug candidates and toxic substances. In this regard, we expect
that the TF profiling technology will greatly synergize with other
system biology approaches, such as transcriptomics and proteomics.

METHODS
MRTU detection protocol. We routinely transfected cells with the
MRTU library in a six-well plate format by using FuGene 6 reagent
(Roche; 3 ml FuGene/1 mg DNA). We isolated total RNA using
TriZol reagent (Invitrogen), treated it with DNAse I (Ambion) for
30 min, and reverse transcribed the RNA using oligo(dT) primer
and Mo-MLV reverse transcriptase (Invitrogen). By PCR, we
amplified one-tenth of the reverse-transcribed RNA using Taq
DNA polymerase (Invitrogen) and two reporter sequence–specific
primers (Supplementary Fig. 1). We labeled the PCR products by
primer extension with 6-carboxyfluorescein (6-FAM) 5¢-labeled
reporter sequence–specific primer (2 min at 95 1C, 20 s at 68 1C
and 10 min at 72 1C) and then digested the products with 5U of
HpaI (New England Biolabs) for 2 h at 37 1C. Using Qiaquick PCR
columns (Qiagen) we purified the fragments and analyzed them on
an ABI 3130xL genetic analyzer (Applied Biosystems). Peaks’
positions were identified by using a set of X-rhodamine (ROX)-
labeled MapMarker1000 molecular weight standards (BioVentures).

MRTU assay data analysis. We processed raw capillary electro-
phoresis data using Attagraph software (Attagene). We determined
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Pearson product-moment correlation of TF activity profiles as

CorðA;BÞ �

P
n
ðAn �/ASÞ�ðBn �/BSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
ðAn �/ASÞ�ðAn �/ASÞ

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
ðBn �/BSÞ�ðBn �/BSÞ

r ;

where A and B represent two different TF profiles, each comprising
specific activity values of N individual TFs: (A1, A2, A3y AN) and
(B1, B2, B3y BN), respectively, and /AS and /BS represent the
mean of values of all individual TFs activities of profiles A and B.

We evaluated the statistical significance of the observed changes
by two-tailed Student’s t-test using data obtained from at least
three independent experiments performed in parallel.

Additional methods. Cell culture conditions and details on
construction of individual RTUs are available in Supplementary
Methods online.

Note: Supplementary information is available on the Nature Methods website.
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